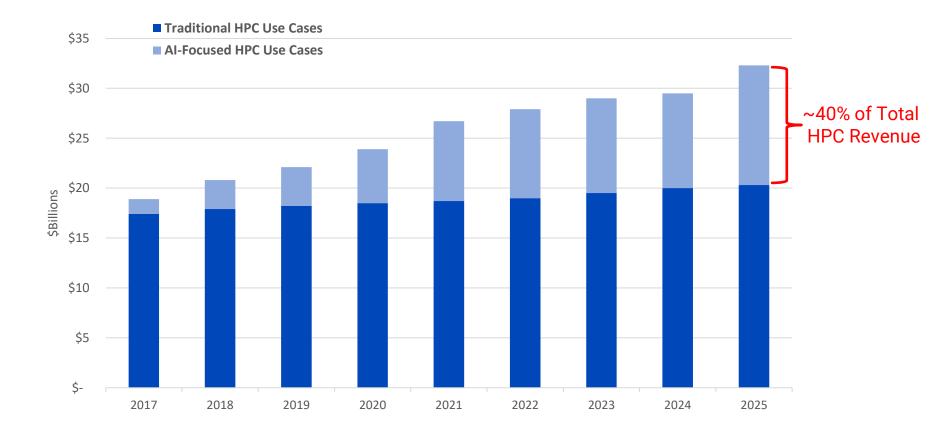
Advances in Processor Architecture Driving HPC/AI Convergence for Next-Generation Exascale Systems

November 2022


Robert Reiner Director of Product Marketing

Worldwide HPC Revenue

2017 - 2025

Al-Focused HPC Use Cases to Account for ${\sim}40\%$ of Total by 2025

Trends Driving HPC/AI Convergence

Key AI Applications are Growing in the HPC Space

- Simulation steering with trained AI models
- Data preparation and cleansing
- Training Neural Networks to do Simulations

Emerging Government Requirements

Recent Dept. of Energy Request for Information for 2025 and beyond specifies both HPC and AI performance projections in a converged environment

Commercial IT Convergence

- IT departments moving away from disparate architectures for HPC and AI to reduce TCO
- Keeps common data localized

HPC vs. Al

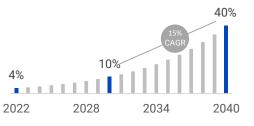
Workload Characteristic	HPC	AI/ML		
High Performance Parallel Processing	Very Important			
FP Precision	High Precision	Low Precision		
Vector vs. Matrix Processing	HPC typically uses vectors	Deep learning typically uses matrixes		
Sparsity and Quantization	Not Used	Very Important to Optimize Performance and Memory Footprint		
Memory Bandwidth	Very Important			
Memory Latency	Important to the extent it affects effective bandwidth			
Scalable Processor and Memory	Very Important			
Cost and Power Efficient	Very Important			

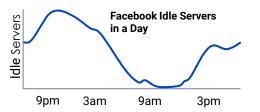
Serious Issues Facing Data Centers

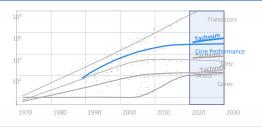
Data Center Power Consumption

- Currently data centers consume ~4% of the planet's power
- At ~15% annual growth this becomes a serious problem
- Power consumption could limit data center expansion

Low Server Utilization

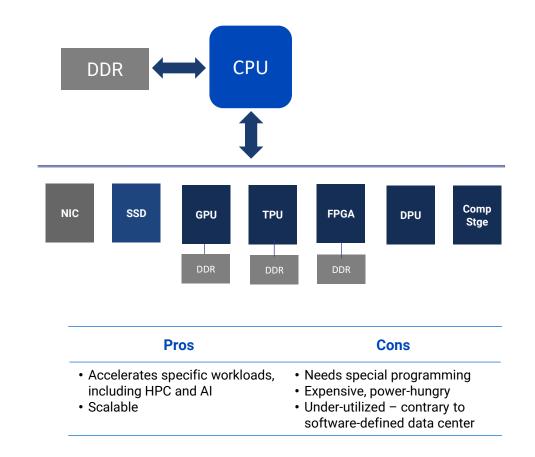

- Average server utilization is frequently less than ~30%
- Facebook's study: <50% server utilization per 24-hours</p>
- Low server utilization costs billions of dollars per year


Performance Plateau and Moore's Law

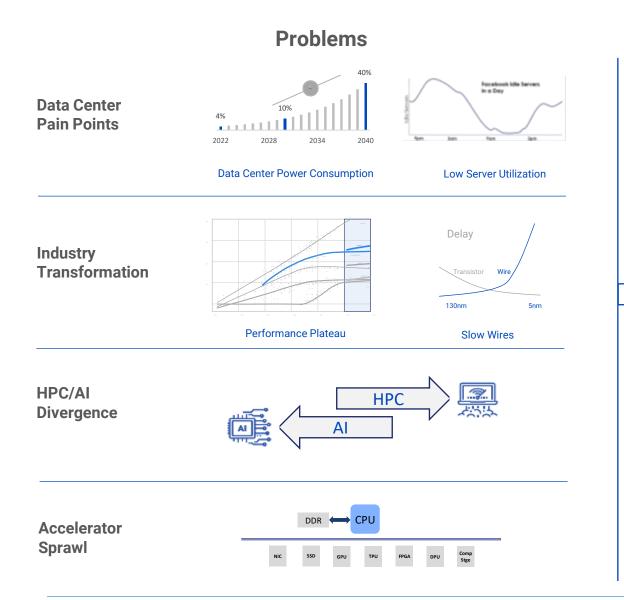

- Performance increase of processors has slowed down
- Moore's law no longer holds with process shrinks

Wires Are Slower as Process Shrinks

- With process shrink transistors are faster but wires are slower
- 10x smaller process would results in 100x slower wire
- ✓ Using copper and low-K materials reduced slow down to ~20x
- ✓ Wire delays are now limiting performance of functional blocks

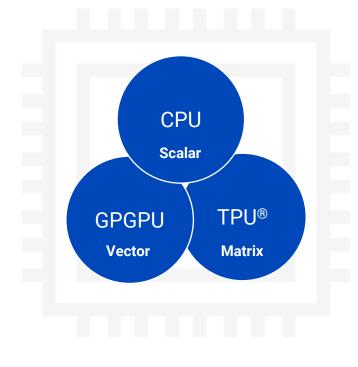

Homogeneous vs. Heterogeneous Systems

DDR CPU t NIC SSD


Homogeneous

Pros	Cons	
 General Purpose, Flexible Easy Deployment/	 Not Designed for HPC or AI Low Parallel Performance for	
Maintenance	Modern Workloads	

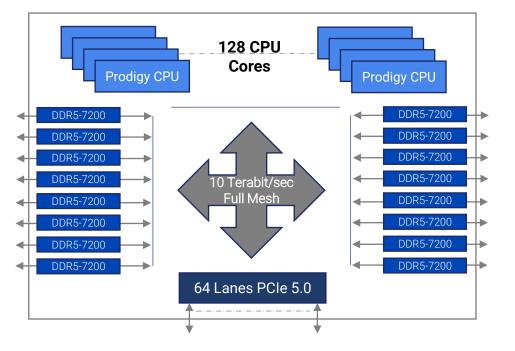
Heterogeneous


Tachyum Prodigy – The World's First Universal Processor

Solution

Tachyum Prodigy Cloud / AI / HPC Supercomputer Chip

Unifies the Functionality of CPU, GPU, and TPU®


Over 3x performance of Xeon

- Up to 10x performance at same power
- Faster than NVIDIA H100 in HPC and AI

Prodigy Feature Summary High Performance CPU – HPC and AI for Free

High-Performance	• 128 Custom-designed 64-bit cores running at 5.7+ GHz	
Processor	Hardware Coherency Supports 2 and 4-socket Systems	
	16 DDR5-7200+ Memory Controllers	
High-Throughput Memory and I/O	• 1TB / 2TB* of Memory Bandwidth (2-4x of x86)	
	• 64 Lanes of PCIe 5.0	
Advanced Process	5nm Process Technology	
Emulation for Other ISAs	Runs Native and x86, Arm, and RISC-V Binaries	
HPC and AI Features	• 2 x 1024-bit Vector Units per Core	
	4096-bit Matrix Processors per Core	
	• FP64, FP32, TF32, BF16, Int8, FP8, TAI Data Types	
	Sparse Matrix Multipliers Optimizes Efficiency	
	Quantization Support Using Low Precision Data Types	
	 Scatter/Gather for efficient storing and loading matrices 	
	* Bandwidth Amplification Technology	

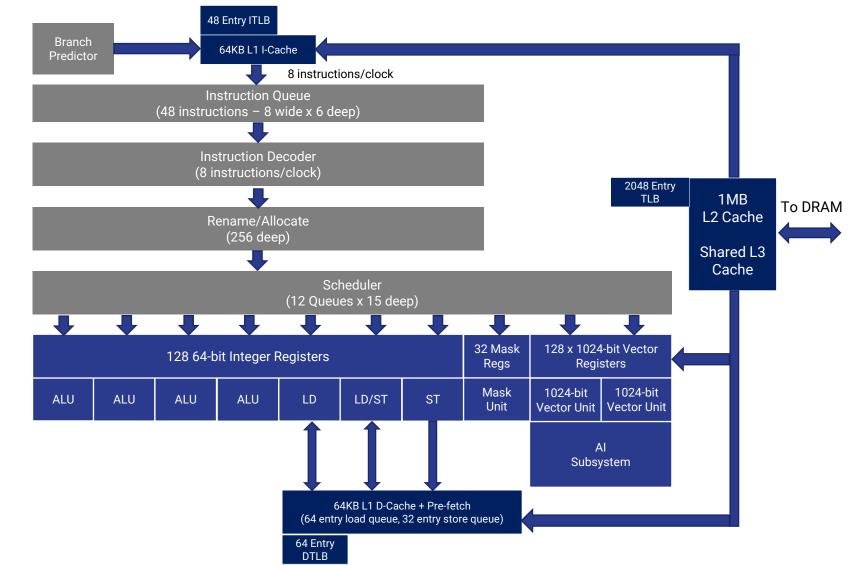
Samples 3Q, 2023

Prodigy Core Architecture

High Throughput Pipeline

- Fetch and decode up to 8 instructions per clock
- 8 wide x 6 deep instruction queue

Advanced Functional Units


- 🔰 4 ALUs
- 🥣 1 LD, 1 LD/ST, 1 ST
- 2 x 1024-bit Vector Units

High Performance Cache

- 🛷 64KB I-Cache
- 🛷 64KB D-Cache
- 1MB L2 Cache
- Shared L3 Cache up to 128MB
 - L2 from Idle cores available as L3

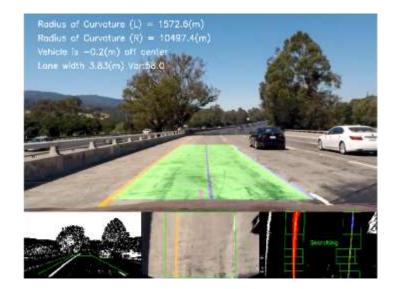
RAS Features

- ✓ I-Cache, D-Cache: SECDED
- 12 Cache: DECTED

Matrix / Vector Processing Built from the Ground Up - Not Bolted On

Prodigy Treats Vectors and Matrices As 1st Class Citizens

		CF	PUs	GP	Us	
Feature	Tachyum? Prodigy	intel . 8380	AMD 7763	⊚ NVIDIA . H100	AMD 7	Comments
Support for FP8	\checkmark			\checkmark		High performance for training and inference
Support for TAI	\checkmark					Increases performance and reduces memory utilization
2 x 1024-bit Vector Units	\checkmark			N/A	N/A	 Prodigy 2x wider than Intel 2x512 vector units Prodigy 4x wider than AMD 2 x 256 vector units
No Penalty for Misaligned Vector Loads/Stores	\checkmark			N/A	N/A	Intel AVX-512 misaligned LOAD/STORE at half speed
AI Sparsity Support	\checkmark			\checkmark		
Super-Sparsity Support	\checkmark					
Native Matrix Support	\checkmark	*		\checkmark	\checkmark	* Intel matrix support is off the main execution path


Tachyum?

Tachyum Prodigy Software Ecosystem

Applications	 Broad range of applications compiled to run natively on Prodigy Broad range of applications compiled to run natively on Prodigy APACHE APACHE Composition Composition
Programming Languages	 Prodigy supports a broad spectrum of programming languages encompassing a wide array of applications and workloads Prodigy supports a broad spectrum of programming languages encompassing a wide array of applications and workloads
Frameworks & Libraries	 Support for major AI frameworks and scientific libraries for cutting-edge matrix and vector performance PyTorch PyTorch
System Software	 GCC, Linux and FreeBSD are ported to Prodigy along with the GNU libraries A SAME A SAME
Software Roadmap	 Tachyum's roadmap adds key applications for big data, containers, and virtualization Image: Construction of the second seco
Emulation	 SW Emulation with QEMU and C-model Prodigy Hardware FPGA Emulation Prodigy Runs x86, Arm, & RISC-V binaries

Scaling Deep Learning

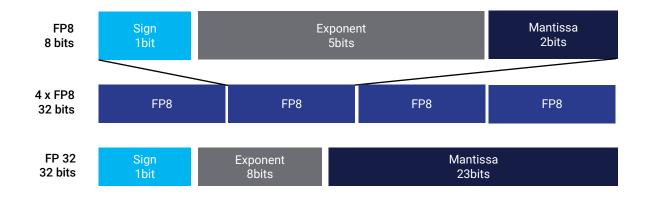
- Prodigy addresses continuing trends in AI models, explosion in complexity as demanded by more complex NLP models and more accurate conversational AI.
- NLP transformer models (BERT, GPT-3, Megatron ...) requires billions of parameters
- Computer vision models (ResNet-50, Fast R-CNN, SSD) requires real-time processing of 4k video
- Training these massive models in FP32 precision can take days or even weeks

Tachyum's Solution:

- providing native low precision datatypes (bf16, int8, fp8 ...)
- matrix multipliers utilizing low precision data types deliver an order-of-magnitude higher performance
- sparse matrix multipliers pushing the performance
- 16 DDR5 interfaces to maximize memory bandwidth and capacity

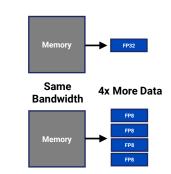
Quantization and Mixed Precision Training

Quantization


- Reduces memory footprint and inference time of Neural Networks
- Reduces numerical precision of both the weights and the operations in the network

FP8 Compared to FP32

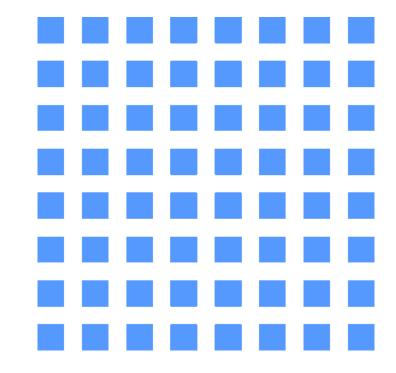
- 4x higher performance
- 4x memory reduction
- 4x higher memory bandwidth efficiency


Prodigy Mixed Precision Training using FP8

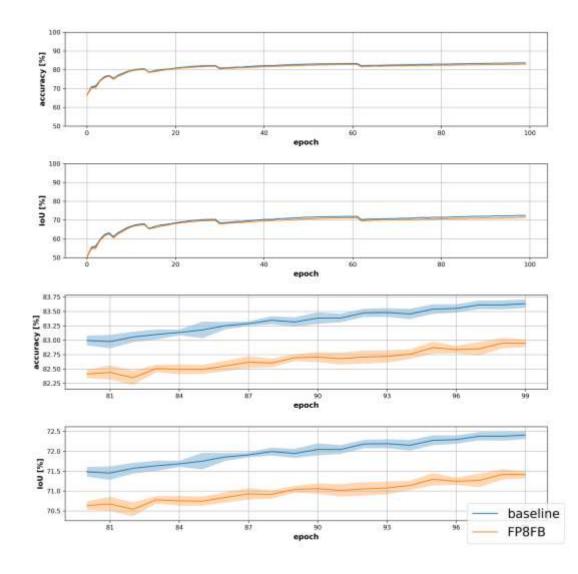
- FP8 used for all arrays
 - Weights, activations, errors, and gradients
- GEMM operations accumulate to BF16
- Master copy of weights stored in BF16

FP8 vs. FP32

4x Higher FP Performance 1.0 FP32 FP8


Sparsity and Super-Sparsity

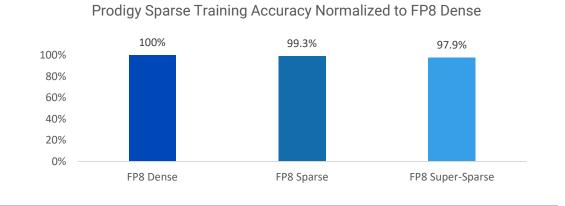
Sparsity

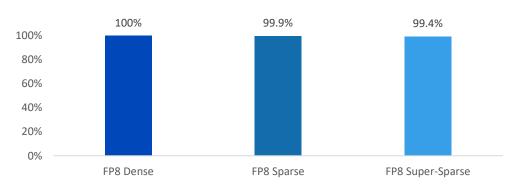

- Pruning or compression of neural networks is another important approach for scaling deep learning
- Prodigy supports block structured sparsity, which Reduces memory and computation requirements
- Prodigy incorporates special instructions to efficiently store, load, and multiply sparse matrices

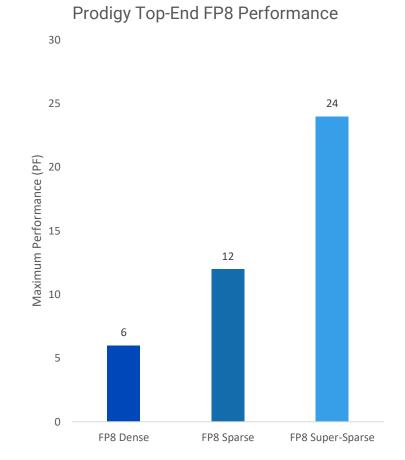
Prodigy Sparse Matrix Multipliers

- Sparsity
 - 4:2 compression ratio
 - Currently supported by others in the industry
- 🛷 Super-Sparsity
 - 8:3 compression ratio
 - Introduced by Tachyum
 - Maximizes compute and memory efficiency

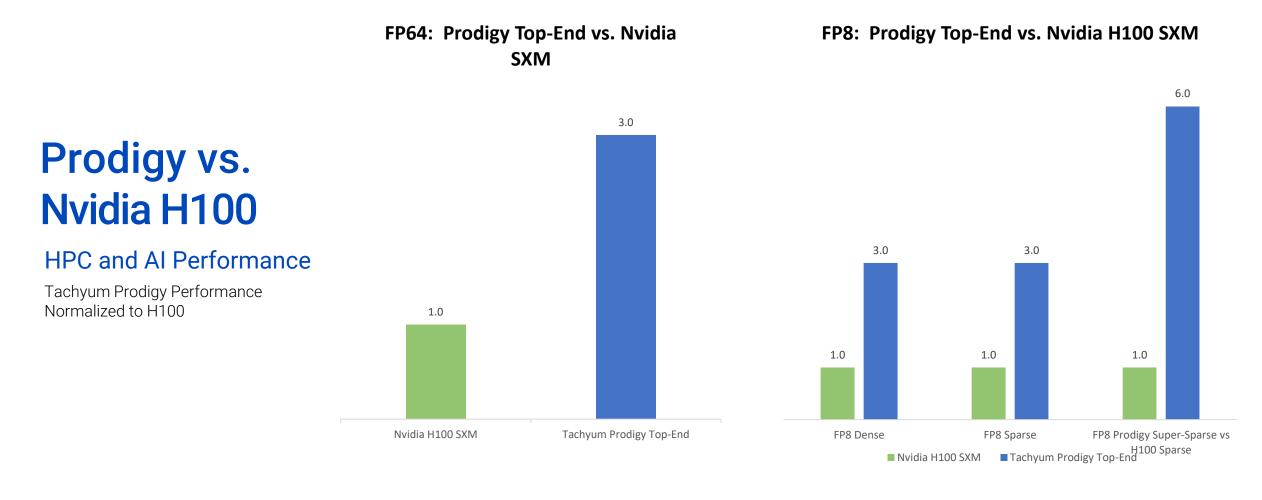
FP8 Instance Segmentation – ConvMixer IoU FP32 72% vs FP8 71.5%


Target vs Predicted




Scaling Deep Learning – Sparsity and Super-Sparsity

FP8 Quantized Resnet20 Model on CIFAR 10



Prodigy Sparse Inference Accuracy Normalized to FP8 Dense

Super-Sparsity Performance **4x Greater** than Dense with Relatively Small Degradation in Accuracy

Prodigy 3x Higher HPC Performance

Prodigy 3x - 6x Higher AI Performance

Prodigy Evaluation Platform

High Scalability with Multiple Configurations

- 128, 64, and 32-core devices running up to 5+ GHz
- 4-socket and 2-socket hardware coherent multiprocessor configurations in addition to single socket
- PCIe 5.0 slots support standard and OCP form factors

Leading-Edge Memory Subsystem Provides Large Footprint for AI Processing

- Up to 64 DDR5 DIMM Modules
- Up to 64 TB memory capacity with 1TB DIMMs by 2024
- Increases to 128 TB with availability of 2TB DIMMs
- FP8 with super-sparsity in 128 TB is equivalent to 512 TB legacy model

Simple Out-of-the-Box Evaluation

- Powerful SDK includes Tachyum Linux, gcc compiler, and wide array of software libraries
- Runs native and x86, Arm, and RISC-V binaries
- Large software ecosystem of applications that have been compiled to run natively on Prodigy

Single Prodigy Platform can Process NLP Models in Memory - Big Al

		Tachyum
Summary		
Prodigy Feature	HPC	AI/ML
High Performance Parallel Processing	\checkmark	\checkmark
Range of Floating-Point Precision	\checkmark	\checkmark
High Performance Vector and Matrix Operations	\checkmark	\checkmark
Support for Quantization and Mixed-Precision Training		\checkmark
Sparsity and Super-Sparsity Support		\checkmark
Hardware Acceleration for Sparse Operations		\checkmark
Scalable, including large memory footprint	\checkmark	\checkmark
High Memory Bandwidth	\checkmark	\checkmark
Simple Programming Model	\checkmark	\checkmark
Software Composable for 24/7 server on time	\checkmark	\checkmark
Easy Deployment and Maintenance	\checkmark	\checkmark
Cost and Power Efficient	\checkmark	\checkmark
Al Futures: Tachyum Al Continues to Scale Al Performance and Efficiency – STAY TUNED		\checkmark

Thank You

Visit us at Booth #330

www.tachyum.com

