

HPC and Al Convergence in a Homogeneous Exascale Cluster

Rob Reiner

Director of Product Marketing

Tachyum

HPC vs. AI – Processor and Memory

2 SC 2

	НРС	AI
High Performance Parallel Processing	Very Important	
FP Precision	High Precision	Low Precision
Vector Processing vs. Matrix Processing	HPC typically uses vectors	Deep learning typically uses matrices
Memory Bandwidth	Very Important	
Memory Latency	Important to the extent it affects effective bandwidth	
Scalable Processor and Memory	Very Important	
Cost and Power Efficient	Very Important	

HPC vs. AI – Storage and Networking

2 SC 21

	HPC	AI	
Storage Type	Distributed clusters		
Storage Characteristics	Parallel file system		
	Object, Block, File	Object – Scalability for data and metadata. Optimal for small files	
	Mostly large files	Small files with a lot of metadata	
	Write intensive	Read intensive	
	Mostly sequential access	Mixed sequential and random	
Networking Characteristics	Fast efficient access to storage and between compute nodes		
	Infiniband or Ethernet with RoCE for hardware interconnect		
	MPI for software interconnect		

Tradition

Traditional Homogeneous vs. Heterogeneous Architectures

Homogeneous

Pros	Cons
 General purpose, flexible Easy deployment/ maintenance 	 Not designed for HPC or AI Low parallel performance for modern workloads

Heterogeneous

11/29/2021

Tachyum Prodigy – World's First Universal Processor

- Prodigy incorporates the functionality of CPU, GPU, and TPU into a single device
- Prodigy is faster than x86/GPU/TPU
 - Faster, 10x less power, 1/3 cost of x86
 - Faster than highest performing GPUs in HPC and AI
- 128 64-bit cores in a Single Device
 - High-performance across a range of workloads in a homogeneous compute environment
- Humanity: 1st human brain sized AI
 - Not only Focus on Deep Learning AI
 - Also Explainable, Bio, Spiking and General AI

Tachyum Prodigy - Advantages of Homogeneous and Heterogeneous Architectures without the Disadvantages

- High Performance Processor Subsystem
 - Up to 128 general purpose 64-bit cores
- High Floating-Point Performance for Parallel Workloads
 - Range of precision from FP64 to AI data types
 - Performance greater than 2 x 512-bit vector units
- Matrix Operations Accelerate Deep Learning
- Scalable
 - Family of 32 128 core devices with support for 2P and 4P Platforms
- High Memory and PCIe Bandwidth
 - 16 DDR5 controllers provide leading-edge bandwidth
 - 64 x PCIe 5.0
- Runs binaries for x86, Arm, and RISC-V
- 5nm Process Technology
- Common Software Easy Deployment and Maintenance
- No need for costly and power-hungry accelerators

Prodigy Software Ecosystem

SC2

Matrix Multiplication – Matrix vs. Vector Instructions Functional Comparison

Vector Instructions

In one step N MACs operations are performed

Matrix Instructions

Matrix Multiplication – Matrix vs. Vector Instructions Instruction Comparison

Vector Instructions

for (int k = 0; k < Kc; k++)	
{	
••••••for (int j = 0; j < Mr; j++)••••••//rows in matri	
<pre> ·····for (int i = 0; i < Nr; i+= Nk) ·····//cols in Matri </pre>	
<pre> ····· ···· for (int ii = 0; ii < Nk; ii++) ···· //cols in Matri </pre>	
<pre>y[j*Mr + i + ii]+= a[j]*b[i + ii];</pre>	
a+= Mr; //next row	
b+= Nr; //next row	

Total $K \times M$ vector instructions calls

ns calls No

Matrix Instructions

No loops required in code – just call MMADD

SC21

GEMM Computation Reduction using Matrix Instructions

MAC instructions calls for vectorized version:

- fadd4 1,439,257,600 calls
- fmul4 1,280,659,456 calls
- Total 2,719,917,056 calls

MMADD instructions calls for matrix version:

- fadd4 164,189,184 calls
- mmadd 9,961,472 calls
- Total 174,150,656 calls

Instruction calls for GEMM

Prodigy Matrix and Vector Instructions for Deep Learning

- Prodigy Matrix Instructions Utilized for Convolutional and Linear Operators •
- Prodigy Vector Instructions Utilized for Activation and Loss functions

Sparsity and Quantization

- Sparsity
 - Sparse matrices include many zeros or values that will not significantly impact a calculation.
 - Prodigy supports sparse matrix operations optimized for compressed networks/ models, thus reducing memory and computation requirements
 - Prodigy incorporates specific instructions for efficient storing and loading sparse matrices and for sparse structured matrix multiplication
- Quantization
 - Quantization reduces the precision of the weights in the neural network while maintaining the required accuracy
 - Prodigy support for quantization includes:
 - Support for low precision data types
 - Support for quantization-aware training, mixedprecision training, post-training quantization inference

Prodigy Delivers Key Requirements for HPC and AI

			
	НРС	AI/ML	
High Performance Parallel Processing	\checkmark	\checkmark	
Range of Floating-Point Precision	\checkmark	\checkmark	
High Performance Vector and Matrix Operations	\checkmark	\checkmark	
Lower Precision and Sparse Data Types		\checkmark	
Hardware Acceleration for Sparse Operations		\checkmark	
Scalable, including large memory footprint	\checkmark	\checkmark	
High Memory Bandwidth	×	\checkmark	
High Performance I/O subsystem	V	\checkmark	
Easy Deployment and Maintenance	\checkmark	\sim	
Cost and Power Efficient	\checkmark	· · · ·	
Simple Programming Model	\checkmark	v.	
11/29/2021		≥ SC21	3

Next Generation Exascale Supercomputer

NSCC Slovakia Supercomputer

64 Compute Racks

64 AI ExaFLOPs >500 DP PetaFLOPs 16 – 32 Storage Racks

100 – 200 PB

- High Performance
 - 1 AI ExaFLOPs of Training and Inferencing per rack
- Prodigy T16128 Universal Processor
 - 128 64-bit cores
- Rack Configuration
 - 32 Prodigy 1U compute nodes
 - 8 sockets per compute node
 - 256 sockets per rack
- Power and Cooling
 - Busbar-based power distribution for servers
 - Liquid cooling for processors and DIMMs

NSCC-SC Compute Rack

1 AI ExaFLOP Compute Rack

- Ceph-based storage rack
 - Support for object, block, and file storage
 - High reliability
- Six storage building blocks per rack, each with:
 - 1 server + 1 JBOD
 - 1.1 petabyte per block
 - 4 x 100 Gb/s Ethernet
- 6.6 petabyte per rack of usable storage

NSCC-SC Storage Rack

6.6 PB Storage Rack

- Peer-to-Peer data network connecting all compute and storage racks
 - Minimizes latency and cost
 - Maximizes efficiency
- 400 Gb/s switches with 100 Gb/s breakout cables to NICs, compute, and storage racks
- Management network connects all compute, storage, power, and cooling nodes

NSCC-SC Networking Architecture

NSCC-SC System Architecture Provides Infrastructure for HPC and AI/ML

	НРС	AI/ML
Fast Efficient Access to Storage and other Compute Nodes	\checkmark	\checkmark
Parallel File System for Distributed Clusters	\checkmark	\checkmark
Support for Object, Block, and File Storage	\checkmark	\checkmark
Scalability for Small Files and Large Amounts of Metadata		\checkmark
High Performance for Write Intensive Workloads	\checkmark	
High Performance for Read Intensive Workloads		\checkmark
11/29/2021		★ SC21

Thank You and Stay Tuned!

Please visit Tachyum at Booth #906

