

Tachyum . • HENDERSON, NEVADA

Prodigy Compared with Homogeneous and Heterogeneous Computer Architectures

Traditional Homogeneous vs. Heterogeneous Architectures

Homogeneous

Heterogeneous

Pros	Cons
 General purpose, flexible Easy deployment/ maintenance 	 Not designed for HPC or AI Low parallel performance for modern workloads

Pros	Cons
 Accelerates specific workloads, including HPC and AI Scalable 	 Requires special programming/config Expensive, power-hungry Under-utilized – contrary to software defined data center

Page 7

Tachyum Prodigy – Advantages of Homogeneous and Heterogeneous Architectures without the Disadvantages

- High Integer Performance for General Purpose Workloads
 - Up to 128 general purpose cores
- High Floating Point Performance for Parallel Workloads
 - Dual 512b vector units provide high performance HPC, AI/ML
- Scalable
 - Family of 16 128 core devices with support 2P and 4P platforms
- Common Software Easy Deployment/ Maintenance
 - All cores part of same ISA
- High Memory Bandwidth
 - 16 DDR5 controllers provides best in industry bandwidth

Samples Q4 '21

Q2 '21:	Emulation for early adopters
Q3 '21:	Emulation system general access
Q4 '21:	Device samples

Prodigy Delivers Key Requirements for Target Markets

	Hyperscale/ Cloud	HPC	AI/ML
High Integer Performance	\checkmark		
High Single-thread Performance	\checkmark		
High Performance Parallel Processing	\checkmark	\checkmark	\checkmark
High Memory Bandwidth	\checkmark	\checkmark	\checkmark
Scalable, including large memory footprint	\checkmark	\checkmark	\checkmark
Easy Deployment and Maintenance	\checkmark	\checkmark	\checkmark
Cost and Power Efficient	\checkmark	\checkmark	\checkmark
Special and compressed data types			\checkmark
4-bit data pipes for inference – Int4			\checkmark

Case Study: Repurposing Idle Servers in Hyperscale Data Center

Facebook web servers sit idle during off hours

Prodigy keeps servers fully utilized 24/7

- AI/ML workloads during off hours
- Web servers during peak hours
- High efficiency, Low TCO

Tachyum⁷

Page G

Thank You!

visit

www.Tachyum.com