The Convergence of HPC and Al in a Software-Composable Homogeneous Data Center

May 2022

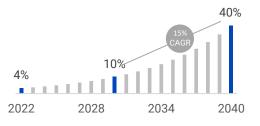
Robert Reiner Director of Product Marketing

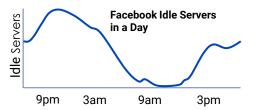
Serious Issues Facing Data Centers

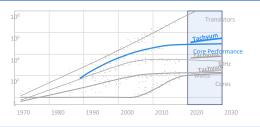
Data Center Power Consumption

- Currently data centers consume ~4% of the planet's power
- At ~15% annual growth this becomes a serious problem
- Power consumption could limit data center expansion

Low Server Utilization


- Average server utilization is frequently less than ~30%
- ✓ Facebook's study: <50% server utilization per 24-hours</p>
- Low server utilization costs billions of dollars per year


Performance Plateau and Moore's Law


- Performance increase of processors has slowed down
- Moore's law no longer holds with process shrinks

Wires Are Slower as Process Shrinks

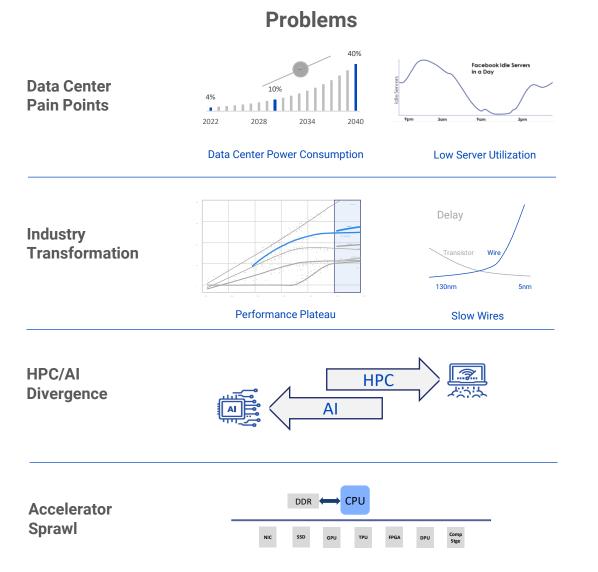
- ✓ With process shrink transistors are faster but wires are slower
- 10x smaller process would results in 100x slower wire
- Using copper and low-K materials reduced slow down to ~20x
- Wire delays are now limiting performance of functional blocks

HPC vs. Al

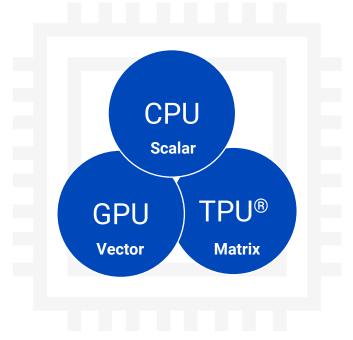
Workload Characteristic	HPC	AI/ML	
High Performance Parallel Processing	Very Important		
FP Precision	High Precision Low Precision		
Vector vs. Matrix Processing	HPC typically uses vectors	Deep learning typically uses matrixes	
Sparsity and Quantization	Not Used	Very Important to Optimize Performance and Memory Footprint	
Memory Bandwidth	Very Important		
Memory Latency	Important to the extent it affects effective bandwidth		
Scalable Processor and Memory	Very Important		
Cost and Power Efficient	Very Important		

Comp

Stge


Homogeneous vs. Heterogeneous Systems

4


Tachyum Prodigy – The World's First Universal Processor

Solution

Tachyum Prodigy Cloud / AI / HPC Supercomputer Chip

Unifies the Functionality of CPU, GPU, and TPU®

- Over 3x performance of Xeon
- Up to 10x performance at same power
- Faster than NVIDIA H100 in HPC and AI

Prodigy Feature Summary High Performance CPU – HPC and AI for Free

High-Performance	• 128 Custom-designed 64-bit cores running at 5.7+ GHz	
Processor	 Hardware Coherency Supports 2 and 4-socket Systems 	
	16 DDR5-7200+ Memory Controllers	
High-Throughput Memory and I/O	 1TB / 2TB* of Memory Bandwidth (2-4x of x86) 	
	• 64 Lanes of PCIe 5.0	
Advanced Process	5nm Process Technology	
Emulation for Other ISAs	Runs Native and x86, Arm, and RISC-V Binaries	
HPC and AI Features	2 x 1024-bit Vector Units per Core	
	4096-bit Matrix Processors per Core	
	 FP64, FP32, TF32, BF16, Int8, FP8, TAI Data Types 	
	Sparse Data Types Optimizes Efficiency	
	Quantization Support Using Low Precision Data Types	
	 Scatter/Gather for efficient storing and loading matrices 	

Sampling End of 2022

32 PCIE 5.0

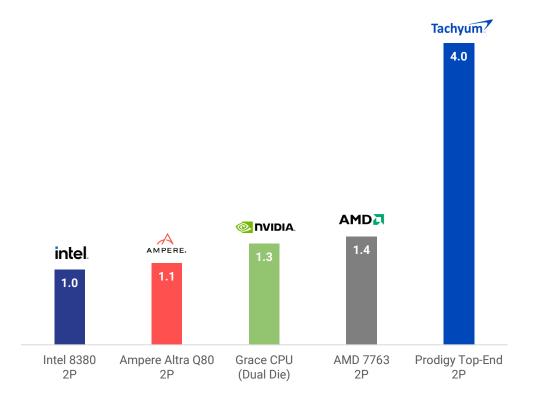
392 P. (12510)

Tachyum confidential

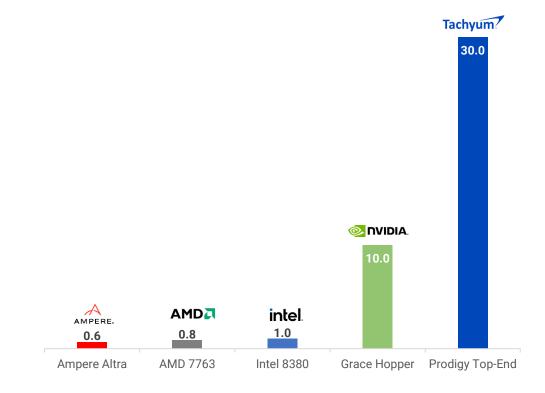
Tachyum Prodigy Software Ecosystem

Applications	 Broad range of applications compiled to run natively on Prodigy 	APACHE LRabbitMO Potton Image: Construction of the second sec
Frameworks & Libraries	 Support for major AI frameworks and scientific libraries for cutting-edge matrix and vector performance 	TensorFlow Image: Complete for the second secon
System Software	 GCC, Linux and FreeBSD are ported to Prodigy along with the GNU libraries 	Image: Streed SD Image: Streed SD <td< th=""></td<>
Emulation	 SW Emulation with QEMU and C-model Prodigy Hardware FPGA Emulation Prodigy Runs x86, Arm, & RISC-V binaries 	EMU x86 Arm ^{RISC-} _V
Software Roadmap	 Tachyum's roadmap adds key applications for big data, containers, and virtualization 	Image: construction of the sector of the s

Prodigy Advantages


	Workload Requirements	Prodigy Differentiation
General Server	High DRAM and I/O Bandwidth	 Industry-leading 16 DDR5-7200+ Memory Controllers 64 lanes of PCIe from 2 x 16 w/ bifurcation down to x2
	Scalable Platforms for Maximum Flexibility	 Hardware Coherency Supports 2 and 4 socket Platforms
HPC/AI	Highly Parallel	 2 x 1024 Vector Units 4 Kb Matrix Al Unit Supporting 16x16, 8x8, and 4x4 Matrixes
	Range of Data Types	 FP64, FP32, TFloat32, BFloat16, FP8, Int8, and TAI Sparsity and Super-Sparsity

Tachyum?

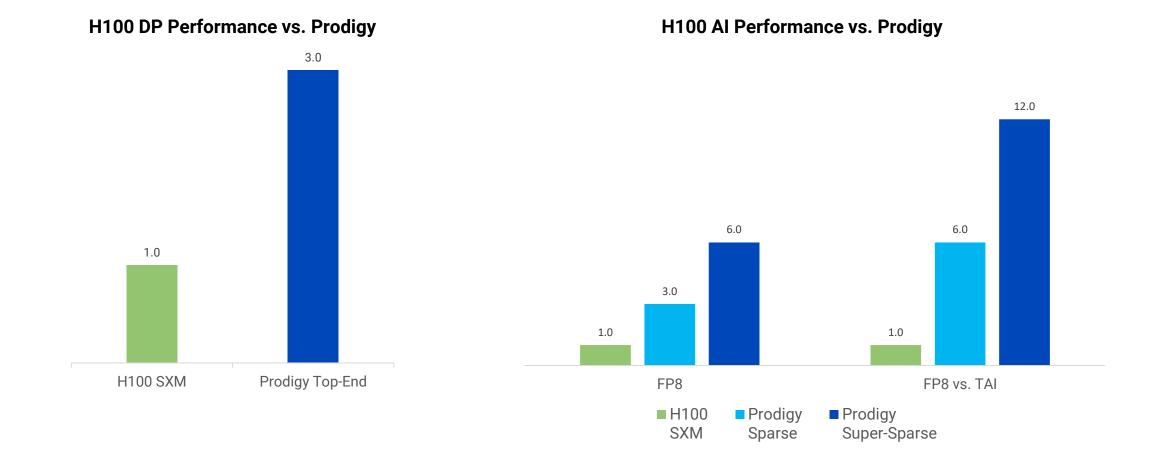

Prodigy vs. x86 and Arm

SPECrate 2017 Integer

Prodigy SPECrate 2017 Integer Performance up to 4x Higher than Competition

Floating Point Raw Performance (FP64)

Prodigy Floating Point Raw Performance up to >30x Higher than Competition

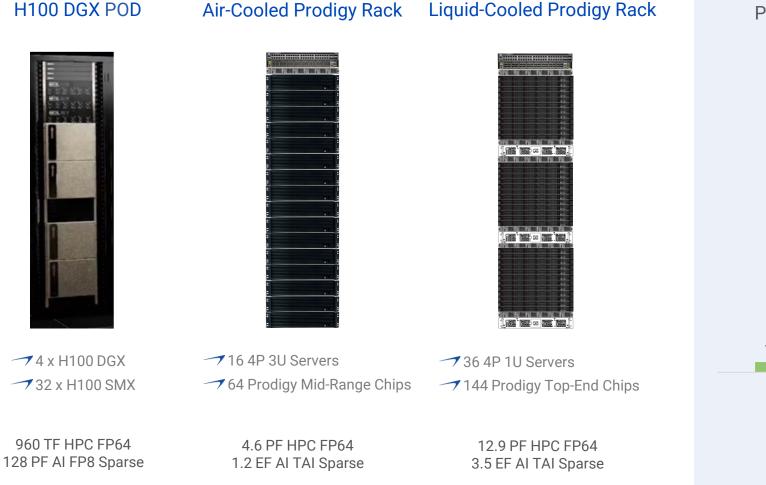

Matrix / Vector Processing Built from the Ground Up - Not Bolted On

Prodigy Treats Vectors and Matrices As 1st Class Citizens

		CP	PUs	GP	Us	
Feature	Tachyum? Prodigy	intel. 8380	AMD	<mark>⊚</mark> NVIDIA. H100	AMD 🗖 MI250	Comments
Support for FP8	\checkmark			\checkmark		High performance for training and inference
Support for TAI	\checkmark					Increases performance and reduces memory utilization
2 x 1024-bit Vector Units	\checkmark			N/A	N/A	 Prodigy 2x wider than Intel 2x512 vector units Prodigy 4x wider than AMD 2 x 256 vector units
No Penalty for Misaligned Vector Loads/Stores	\checkmark			N/A	N/A	Intel AVX-512 misaligned LOAD/STORE at half speed
AI Sparsity Support	\checkmark			\checkmark		
Super-Sparsity Support	\checkmark					
Native Matrix Support	\checkmark	*		\checkmark	\checkmark	* Intel matrix support is off the main execution path

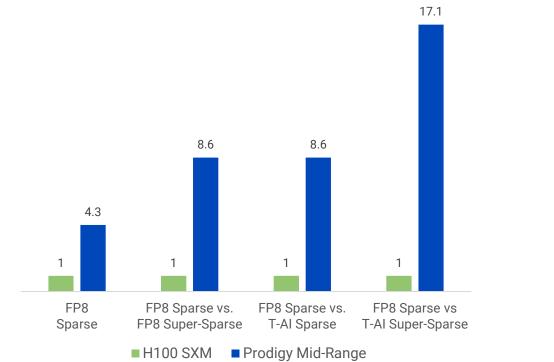
Tachyum?

Prodigy vs. Nvidia H100 GPU – HPC and AI

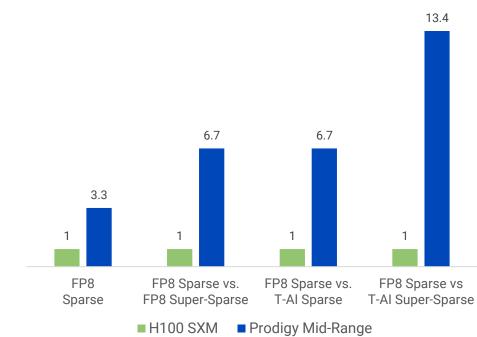


Prodigy Delivers Up to **12x Higher AI Performance** and **3x Higher HPC Performance** than H100

Prodigy vs. Nvidia H100 – Rack-Level Comparison



Prodigy Rack Performance Normalized to H100 DGX Pod



Prodigy vs. Nvidia H100 Rack Performance/TCO and Performance/W

H100 Rack Performance/TCO vs. Prodigy

H100 Rack Performance/W vs. Prodigy

Prodigy Rack Solutions Deliver >17x Higher Performance/TCO and >13x Higher Performance/W than H100 SXM

Tachyum?

Summary

HPC	AI/ML
\checkmark	\checkmark
\checkmark	\checkmark
\checkmark	\checkmark
	\checkmark
	\checkmark
\checkmark	\checkmark
	Image: Control of the control of t

Thank You

visit

www.tachyum.com

